Follow
Neela Nataraj
Neela Nataraj
Department of Mathematics, IIT Bombay
Verified email at math.iitb.ac.in
Title
Cited by
Cited by
Year
Mixed discontinuous Galerkin finite element method for the biharmonic equation
T Gudi, N Nataraj, AK Pani
Journal of Scientific Computing 37, 139-161, 2008
742008
hp-discontinuous Galerkin methods for strongly nonlinear elliptic boundary value problems
T Gudi, N Nataraj, AK Pani
Numerische Mathematik 109 (2), 233-268, 2008
392008
Finite volume element method for second order hyperbolic equations
S Kumar, N Nataraj, AK Pani
International Journal of Numerical Analysis and Modeling 5 (1), 132-151, 2008
372008
An ℎ𝑝-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type
T Gudi, N Nataraj, A Pani
Mathematics of computation 77 (262), 731-756, 2008
302008
Discontinuous Galerkin finite volume element methods for second‐order linear elliptic problems
S Kumar, N Nataraj, AK Pani
Numerical Methods for Partial Differential Equations: An International …, 2009
292009
A priori and a posteriori error control of discontinuous Galerkin finite element methods for the von Kármán equations
C Carstensen, G Mallik, N Nataraj
IMA Journal of Numerical Analysis 39 (1), 167-200, 2019
282019
A nonconforming finite element approximation for the von Kármán equations
G Mallik, N Nataraj
ESAIM: Mathematical Modelling and Numerical Analysis 50 (2), 433-454, 2016
272016
Semidiscrete Galerkin method for equations of motion arising in Kelvin‐Voigt model of viscoelastic fluid flow
S Bajpai, N Nataraj, AK Pani, P Damazio, JY Yuan
Numerical Methods for Partial Differential Equations 29 (3), 857-883, 2013
272013
Improved estimate for gradient schemes and super-convergence of the TPFA finite volume scheme
J Droniou, N Nataraj
IMA Journal of Numerical Analysis 38 (3), 1254-1293, 2018
252018
Conforming finite element methods for the von Kármán equations
G Mallik, N Nataraj
Advances in Computational Mathematics 42, 1031-1054, 2016
252016
A new mixed finite element method for Burgers’ equation
A Pany, N Nataraj, S Singh
Journal of Applied Mathematics and Computing 23, 43-55, 2007
212007
An a posteriori error analysis of mixed finite element Galerkin approximations to second order linear parabolic problems
S Memon, N Nataraj, AK Pani
SIAM Journal on Numerical Analysis 50 (3), 1367-1393, 2012
202012
An interior penalty method for distributed optimal control problems governed by the biharmonic operator
T Gudi, N Nataraj, K Porwal
Computers & Mathematics with Applications 68 (12), 2205-2221, 2014
192014
On a two-grid finite element scheme combined with Crank–Nicolson method for the equations of motion arising in the Kelvin–Voigt model
S Bajpai, N Nataraj
Computers & Mathematics with Applications 68 (12), 2277-2291, 2014
182014
ON FULLY DISCRETE FINITE ELEMENT SCHEMES FOR EQUATIONS OF MOTION OF KELVIN-VOIGT FLUIDS.
S Bajpai, N Nataraj, AK Pani
International Journal of Numerical Analysis & Modeling 10 (2), 2013
182013
Analysis of an interior penalty method for fourth order problems on polygonal domains
T Gudi, HS Gupta, N Nataraj
Journal of Scientific Computing 54, 177-199, 2013
182013
Nonconforming finite element discretization for semilinear problems with trilinear nonlinearity
C Carstensen, G Mallik, N Nataraj
IMA Journal of Numerical Analysis 41 (1), 164-205, 2021
172021
Error analysis of nonconforming and mixed FEMs for second-order linear non-selfadjoint and indefinite elliptic problems
C Carstensen, AK Dond, N Nataraj, AK Pani
Numerische Mathematik 133, 557-597, 2016
162016
On a two-grid finite element scheme for the equations of motion arising in Kelvin-Voigt model
S Bajpai, N Nataraj, AK Pani
Advances in Computational Mathematics 40, 1043-1071, 2014
162014
A priori and a posteriori error analysis of the Crouzeix–Raviart and Morley FEM with original and modified right-hand sides
C Carstensen, N Nataraj
Computational Methods in Applied Mathematics 21 (2), 289-315, 2021
152021
The system can't perform the operation now. Try again later.
Articles 1–20