Finite-size effects for anisotropic bootstrap percolation: logarithmic corrections ACD van Enter, T Hulshof Journal of Statistical Physics 128 (6), 1383-1389, 2007 | 24 | 2007 |

Random walk on the high-dimensional IIC M Heydenreich, R van der Hofstad, T Hulshof Communications in Mathematical Physics 329 (1), 57-115, 2014 | 22 | 2014 |

High-dimensional incipient infinite clusters revisited M Heydenreich, R van der Hofstad, T Hulshof Journal of Statistical Physics 155 (5), 966-1025, 2014 | 20 | 2014 |

Structures in supercritical scale-free percolation M Heydenreich, T Hulshof, J Jorritsma The Annals of Applied Probability 27 (4), 2569-2604, 2017 | 18 | 2017 |

Higher order corrections for anisotropic bootstrap percolation H Duminil-Copin, ACD van Enter, T Hulshof Probability Theory and Related Fields 172 (1-2), 191-243, 2018 | 13 | 2018 |

Backbone scaling limit of the high-dimensional IIC M Heydenreich, R van der Hofstad, T Hulshof, G Miermont arXiv preprint arXiv:1706.02941, 2013 | 10 | 2013 |

The one-arm exponent for mean-field long-range percolation T Hulshof Electronic Journal of Probability 20, 2015 | 9 | 2015 |

Expansion of percolation critical points for Hamming graphs L Federico, R Van Der Hofstad, F Den Hollander, T Hulshof Combinatorics, Probability and Computing 29 (1), 68-100, 2020 | 5 | 2020 |

Slightly subcritical hypercube percolation T Hulshof, A Nachmias Random Structures & Algorithms 56 (2), 557-593, 2020 | 3 | 2020 |

The high-dimensional incipient infinite cluster WJT Hulshof | 2 | 2013 |

Backbone scaling limit of the high-dimensional IIC: extended version M Heydenreich, R van der Hofstad, T Hulshof, G Miermont arXiv preprint arXiv:1706.02941, 2017 | 1 | 2017 |

Connectivity threshold for random subgraphs of the Hamming graph L Federico, R van der Hofstad, T Hulshof Electronic Communications in Probability 21, 2016 | 1 | 2016 |

Not all interventions are equal for the height of the second peak T Hulshof, J Jorritsma, J Komjáthy arXiv preprint arXiv:2005.06880, 2020 | | 2020 |

Expansion of percolation critical points for hamming graphs L Federico, RW van der Hofstad, F den Hollander, T Hulshof Combinatorics, Probability and Computing 29 (1), 68-100, 2020 | | 2020 |

Random walk on barely supercritical branching random walk R van der Hofstad, T Hulshof, J Nagel Probability Theory and Related Fields, 1-53, 2019 | | 2019 |

Sharpness for inhomogeneous percolation on quasi-transitive graphs T Beekenkamp, T Hulshof Statistics & Probability Letters 152, 28-34, 2019 | | 2019 |

-robust spanners in one dimension K Buchin, T Hulshof, D Oláh arXiv preprint arXiv:1803.08719, 2018 | | 2018 |

Supplementary material to: "Backbone scaling limit of the high-dimensional IIC" M Heydenreich, R van der Hofstad, T Hulshof, G Miermont | | 2013 |

Up and beyond: Building a mountain in the Netherlands PJA De Serra, T Fatima, A Fernández, WJT Hulshof, T Khaniyev, ... 84th European Study Group Mathematics with Industry (SWI 2012), January 30 …, 2013 | | 2013 |

Up and Beyond-Building a Mountain in the Netherlands PJ De Andrade Serra, T Fatima, A Fernandez, T Hulshof, T Khaniyev, ... | | 2012 |