Successive prompting for decomposing complex questions D Dua, S Gupta, S Singh, M Gardner arXiv preprint arXiv:2212.04092, 2022 | 36 | 2022 |
Unobserved local structures make compositional generalization hard B Bogin, S Gupta, J Berant arXiv preprint arXiv:2201.05899, 2022 | 19 | 2022 |
COVR: A test-bed for visually grounded compositional generalization with real images B Bogin, S Gupta, M Gardner, J Berant arXiv preprint arXiv:2109.10613, 2021 | 18 | 2021 |
Coverage-based Example Selection for In-Context Learning S Gupta, S Singh, M Gardner arXiv preprint arXiv:2305.14907, 2023 | 2 | 2023 |
Structurally Diverse Sampling for Sample-Efficient Training and Comprehensive Evaluation S Gupta, S Singh, M Gardner arXiv preprint arXiv:2203.08445, 2022 | 2 | 2022 |
Cross-Lingual Knowledge Distillation for Answer Sentence Selection in Low-Resource Languages S Gupta, Y Matsubara, A Chadha, A Moschitti arXiv preprint arXiv:2305.16302, 2023 | 1 | 2023 |
Leveraging Code to Improve In-context Learning for Semantic Parsing B Bogin, S Gupta, P Clark, A Sabharwal arXiv preprint arXiv:2311.09519, 2023 | | 2023 |
GistScore: Learning Better Representations for In-Context Example Selection with Gist Bottlenecks S Gupta, C Rosenbaum, ER Elenberg arXiv preprint arXiv:2311.09606, 2023 | | 2023 |
Structurally Diverse Sampling Reduces Spurious Correlations in Semantic Parsing Datasets. S Gupta, S Singh, M Gardner CoRR, 2022 | | 2022 |