Follow
Yingbin Bai
Title
Cited by
Cited by
Year
Understanding and improving early stopping for learning with noisy labels
Y Bai, E Yang, B Han, Y Yang, J Li, Y Mao, G Niu, T Liu
Advances in Neural Information Processing Systems 34, 24392-24403, 2021
2042021
Me-momentum: Extracting hard confident examples from noisily labeled data
Y Bai, T Liu
Proceedings of the IEEE/CVF international conference on computer vision …, 2021
392021
Biomedical image analysis competitions: The state of current participation practice
M Eisenmann, A Reinke, V Weru, MD Tizabi, F Isensee, TJ Adler, ...
arXiv preprint arXiv:2212.08568, 2022
282022
RSA: reducing semantic shift from aggressive augmentations for self-supervised learning
Y Bai, E Yang, Z Wang, Y Du, B Han, C Deng, D Wang, T Liu
Advances in Neural Information Processing Systems 35, 21128-21141, 2022
14*2022
QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge
H Bran, F Navarro, I Ezhov, A Bayat, D Das, F Kofler, S Shit, ...
arXiv preprint arXiv:2405.18435, 2024
12024
Subclass-dominant label noise: a counterexample for the success of early stopping
Y Bai, Z Han, E Yang, J Yu, B Han, D Wang, T Liu
Advances in Neural Information Processing Systems 36, 2024
12024
Robust Representation Learning: Understanding the Role of Early Stopping amidst Noisy Labels
Y Bai
2024
The system can't perform the operation now. Try again later.
Articles 1–7