Krisztina Regős
Krisztina Regős
Verified email at
Cited by
Cited by
Balancing polyhedra
G Domokos, F Kovács, Z Lángi, K Regős, PT Varga
arXiv preprint arXiv:1810.05382, 2018
Mono-unstable polyhedra with point masses have at least 8 vertices
S Bozóki, G Domokos, F Kovács, K Regős
International Journal of Solids and Structures 234, 111276, 2022
A two-vertex theorem for normal tilings
G Domokos, ÁG Horváth, K Regős
Aequationes mathematicae 97 (1), 185-197, 2023
Polygonal tessellations as predictive models of molecular monolayers
K Regős, R Pawlak, X Wang, E Meyer, S Decurtins, G Domokos, ...
Proceedings of the National Academy of Sciences 120 (16), e2300049120, 2023
A discrete time evolution model for fracture networks
G Domokos, K Regős
Central European Journal of Operations Research, 1-12, 2022
The smallest mono-unstable convex polyhedron with point masses has 8 faces and 11 vertices
D Papp, K Regős, G Domokos, S Bozóki
European Journal of Operational Research 310 (2), 511-517, 2023
Soft cells and the geometry of seashells
G Domokos, A Goriely, ÁG Horváth, K Regős
arXiv preprint arXiv:2402.04190, 2024
The smallest mono-unstable, homogeneous convex polyhedron has at least 7 vertices
S Bozóki, G Domokos, D Papp, K Regős
arXiv preprint arXiv:2401.17906, 2024
On equilibria of tetrahedra
G Almádi, RJ MacG. Dawson, G Domokos, K Regős
The Mathematical Intelligencer, 1-8, 2023
An evolution model for polygonal tessellations as models for crack networks and other natural patterns
P Bálint, G Domokos, K Regős
arXiv preprint arXiv:2301.09503, 2023
On Equilibria of Tetrahedra Gergő Almádi
RJMG Dawson, G Domokos, K Regős
Evolution and Memory of Fractured Planetary Shells: Insights from Mud Crack Analog Experiments
S Silver, K Regős, G Domokos, DJ Jerolmack
AGU Fall Meeting Abstracts 2022, EP42D-1650, 2022
The system can't perform the operation now. Try again later.
Articles 1–12