Signal-to-Noise Ratio: A Robust Distance Metric for Deep Metric Learning T Yuan, W Deng, J Tang, Y Tang, B Chen arXiv preprint arXiv:1904.02616 CVPR 2019, 2019 | 105 | 2019 |
An actor-critic-based transfer learning framework for experience-driven networking Z Xu, D Yang, J Tang, Y Tang, T Yuan, Y Wang, G Xue IEEE/ACM Transactions on Networking 29 (1), 360-371, 2020 | 28 | 2020 |
Flow splitter: A deep reinforcement learning-based flow scheduler for hybrid optical-electrical data center network Y Tang, H Guo, T Yuan, X Gao, X Hong, Y Li, J Qiu, Y Zuo, J Wu IEEE Access 7, 129955-129965, 2019 | 21 | 2019 |
Unsupervised adaptive hashing based on feature clustering T Yuan, W Deng, J Hu, Z An, Y Tang Neurocomputing 323, 373-382, 2019 | 20 | 2019 |
Effectively reconfigure the optical circuit switching layer topology in data center network by OCBridge Y Tang, H Guo, Y Zhu, T Yuan, X Gao, C Wang, J Wu Journal of Lightwave Technology 37 (3), 897-908, 2018 | 15 | 2018 |
Global hybrid routing for scale-free networks X Gao, H Guo, Y Chen, Y Tang, C Wang, S Xu, J Wu IEEE Access 7, 19782-19791, 2019 | 14 | 2019 |
OEHadoop: accelerate Hadoop applications by co-designing Hadoop with data center network Y Tang, H Guo, T Yuan, Q Wu, X Li, C Wang, X Gao, J Wu IEEE Access 6, 25849-25860, 2018 | 12 | 2018 |
A low failure rate quantum algorithm for searching maximum or minimum Y Chen, S Wei, X Gao, C Wang, Y Tang, J Wu, H Guo Quantum Information Processing 19, 1-28, 2020 | 11 | 2020 |
Effective*-flow schedule for optical circuit switching based data center networks: A comprehensive survey Y Tang, T Yuan, B Liu, C Xiao Computer Networks 197, 108321, 2021 | 10 | 2021 |
ARPruning: An automatic channel pruning based on attention map ranking T Yuan, Z Li, B Liu, Y Tang, Y Liu Neural Networks 174, 106220, 2024 | 6 | 2024 |
Ocbridge: An efficient topology reconfiguration strategy in optical data center network Y Tang, H Guo, J Wu 2018 Optical Fiber Communications Conference and Exposition (OFC), 1-3, 2018 | 6 | 2018 |
Efficient topology reconstruction via machine learning based traffic patterns recognition in optically interconnected computing system C Wang, H Guo, X Gao, Y Chen, Y Tang, J Wu IEEE Access 7, 28548-28558, 2019 | 3 | 2019 |
Machine learning assisted optical network resource scheduling in data center networks H Guo, C Wang, Y Tang, Y Zhu, J Wu, Y Zuo International IFIP Conference on Optical Network Design and Modeling, 204-210, 2019 | 2 | 2019 |
HeterSim: enable flexible simulation for heterogeneous distributed deep learning platform Y Tang, H Zhang, L Wang, Z Guo, Y Zhao, R Li International Conference on Mechatronics and Intelligent Control (ICMIC 2024 …, 2025 | | 2025 |
Knowledge Augmentation for Distillation: A General and Effective Approach to Enhance Knowledge Distillation Y Tang, Z Guo, L Wang, B Fan, F Cao, K Gao, H Zhang, R Li Proceedings of the 1st International Workshop on Efficient Multimedia …, 2024 | | 2024 |
A Survey on Performance Modeling and Prediction for Distributed DNN Training Z Guo, Y Tang, J Zhai, T Yuan, J Jin, L Wang, Y Zhao, R Li IEEE Transactions on Parallel and Distributed Systems, 2024 | | 2024 |
Simulating LLM Training in CXL-Based Heterogeneous Computing Cluster Y Tang, T Yuan, F Cao, L Wang, Z Guo, Y Zhao, R Li IEEE INFOCOM 2024-IEEE Conference on Computer Communications Workshops …, 2024 | | 2024 |
Decentralized Communication-assisted Sensing based on Federated Learning Framework for IIoT J Jin, Z Jiao, J Mu, W Lv, Y Tang, T Yuan Proceedings of the 3rd ACM MobiCom Workshop on Integrated Sensing and …, 2023 | | 2023 |
AI-Enabled Experience-Driven Networking: Vision, State-of-the-Art and Future Directions Y Tang, T Yuan, Z Xu, W Zhang, J Tang, G Xue, Y Wang IEEE Network 37 (3), 60-66, 2022 | | 2022 |
AI-enabled Multi-modal Network Anomaly Association: A Deep Self/Semi-Supervised Learning Approach Y Tang, Y Zhang, Z Yin, J Deng, F Li, Y Cui, X Zhang ICC 2022-IEEE International Conference on Communications, 4068-4073, 2022 | | 2022 |